# Magical Distribution

#### Chocomint

# 1 Inspiration

The problem is given by Grant Sanderson (3B1B):



## 2 CDF and PDF

Given a random variable X with probability desity function (PDF)  $f_X(x)$  and cumulative distribution function (CDF)  $F_X(x)$ , they have following relationship:

$$f_X(x) = \frac{d}{dx} F_X(x)$$

## 3 Calculation

We have 3 random variable  $x, y, z \sim U(0, 1)$ , which can be regard as "choosing random point in the unit cube  $\{(x, y, z) | 0 \leq x, y, z \leq 1\}$ ."

Now, let's consider our goal function  $(xy)^z$ . We can derive its CDF by

CDF of 
$$(xy)^z = F(s) = P[(xy)^z \le s]$$
 (1)

Notice that  $P[(xy)^z \leq s]$  is equal to the volume ratio of  $V[(xy)^z \leq s$  within unit cube] to V(unit cube). Because V(unit cube) = 1, we get

$$P[(xy)^z \le s] = V[(xy)^z \le s \text{ within unit cube}] \equiv V_s$$

Consider the inequality  $(xy)^z \leq s$ . Apply  $\ln()$  and divide  $\ln(xy)$  to both side to leave z to one side. Be careful that  $x, y, s \leq 1$  which means dividing  $\ln(xy)$  will change the sign. Therefore, we get the final inequality to represent our volume:

$$V_s = \left\{ z \ge \frac{\ln s}{\ln xy} \, \middle| \, \text{within unit cube} \right\} \tag{2}$$

Using this inequality, we can easily express the volume by double integral. But cause z also has limitation  $(z \leq 1)$ , we should divide our integral domain.



As the picture shows, red line is the intersection line of  $(xy)^z$  on the plane z = 1 and blue dotted line is x = s. Using these two lines, we separate the integral domain into three parts  $R_1, R_2, R_3$ (project to x-y plane). Therefore, the volume is

$$V_s = 1 - \left(\iint_{R_1} \frac{\ln s}{\ln xy} \, dA + \iint_{R_2} \frac{\ln s}{\ln xy} \, dA + \iint_{R_3} 1 \cdot dA\right) \tag{3}$$

Expand the integrals by implementing upper and lower limits:

$$1 - V_s = \int_0^s \int_0^1 \frac{\ln s}{\ln xy} \, dy \, dx + \int_s^1 \int_0^{s/x} \frac{\ln s}{\ln xy} \, dy \, dx + \text{Area of } R_3$$

Trivially, the area of  $R_3$  is  $(s \ln s - s + 1)$ . Therefore, we can simplify the equation:

$$-V_s = (\ln s) \left( \int_0^s \int_0^1 \frac{1}{\ln xy} \, dy \, dx + \int_s^1 \int_0^{s/x} \frac{1}{\ln xy} \, dy \, dx \right) + (s \ln s - s) \tag{4}$$

Extract the two integrals and denote them as  $I_1$  and  $I_2$ :

$$I_1 = \int_0^s \int_0^1 \frac{1}{\ln xy} \, dy \, dx \qquad I_2 = \int_s^1 \int_0^{s/x} \frac{1}{\ln xy} \, dy \, dx \tag{5}$$

First, we consider the derivative of  $I_1$ .

$$\frac{dI_1}{ds} = \frac{d}{ds} \int_0^s \int_0^1 \frac{1}{\ln xy} \, dy \, dx = \int_0^1 \frac{1}{\ln sy} \, dy$$

Because inner integral is independent to s, we can just simply apply FTOC to replace x with s in inner integral.

Next, we move to the derivative of  $I_2$ .

$$\frac{dI_2}{ds} = \frac{d}{ds} \int_s^1 \int_0^{s/x} \frac{1}{\ln xy} \, dy \, dx$$

Unfortunately, there's s in inner integral, so we cannot apply FTOC. Let's introduce a useful tool, Leibniz integral rule (simplified form):

$$\frac{d}{dx}\int_{a}^{x}f(x,t)\,dt = f(x,x) + \int_{a}^{x}\frac{\partial}{\partial x}f(x,t)\,dt$$
(6)

With this tool, we represent inner integral as f(s, x), then we can get

$$\frac{dI_2}{ds} = -\frac{d}{ds} \int_1^s f(s, x) dx$$
$$= -f(s, s) - \int_1^s \frac{\partial}{\partial s} f(s, x) dx$$
$$= -\int_0^{s/s} \frac{1}{\ln sy} dy - \int_1^s \frac{1}{x} \cdot \frac{1}{\ln s} dx$$
$$= -\int_0^1 \frac{1}{\ln sy} dy - 1$$

From line 2 to 3, we apply FTOC again. Let's combine the derivative of  $I_1$  and  $I_2$ :

$$\frac{dI_1}{ds} + \frac{dI_2}{ds} = \frac{d}{ds} \left( I_1 + I_2 \right) = -1 \tag{7}$$

That is a constant! On the other hand, it shows that

$$I_1 + I_2 = -s + Const.$$

Notice that  $I_1$  has the integral  $\int_0^s$  and  $I_2$  has  $\int_0^{s/x}$ , so when s = 0,  $I_1$  and  $I_2$  should be both 0. That is to say, *Const.* = 0, which also means

$$I_1 + I_2 = -s \tag{8}$$

Back to the equation (4), we can now derivative both side by s:

$$-\frac{dV_s}{ds} = \frac{1}{s}(I_1 + I_2) + (\ln s)\frac{d}{ds}(I_1 + I_2) + \ln s$$

Insert the values that we just calculated, then we get

$$\frac{dV_s}{ds} = 1$$

Recall the definition of CDF, which is just the volume  $V_s$ , and PDF is the derivative of CDF. Therefore:

$$PDF \text{ of } (xy)^z = 1 \tag{9}$$

That is to say, the distribution of  $(xy)^z$  is U(0,1)