
Magical Distribution

Chocomint

1 Inspiration

The problem is given by Grant Sanderson (3B1B):

2 CDF and PDF

Given a random variable X with probability desity function (PDF) fX(x) and cumulative distri-

bution function (CDF) FX(x), they have following relationship:

fX(x) =
d

dx
FX(x)
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3 Calculation

We have 3 random variable x, y, z ∼ U(0, 1), which can be regard as ”choosing random point in

the unit cube {(x, y, z) | 0 ≤ x, y, z ≤ 1}.”

Now, let’s consider our goal function (xy)z. We can derive its CDF by

CDF of (xy)z = F (s) = P
[
(xy)z ≤ s

]
(1)

Notice that P
[
(xy)z ≤ s

]
is equal to the volume ratio of V

[
(xy)z ≤ s within unit cube

]
to V(unit

cube). Because V(unit cube) = 1, we get

P
[
(xy)z ≤ s

]
= V

[
(xy)z ≤ s within unit cube

]
≡ Vs

Consider the inequality (xy)z ≤ s. Apply ln() and divide ln(xy) to both side to leave z to one

side. Be careful that x, y, s ≤ 1 which means dividing ln(xy) will change the sign. Therefore, we

get the final inequality to represent our volume:

Vs =

{
z ≥ ln s

lnxy

∣∣∣∣within unit cube

}
(2)

Using this inequality, we can easily express the volume by double integral. But cause z also has

limitation (z ≤ 1), we should divide our integral domain.

As the picture shows, red line is the intersection line of (xy)z on the plane z = 1 and blue dotted

line is x = s. Using these two lines, we separate the integral domain into three parts R1, R2, R3

(project to x-y plane). Therefore, the volume is

Vs = 1−
(∫∫

R1

ln s

lnxy
dA+

∫∫
R2

ln s

lnxy
dA+

∫∫
R3

1 · dA
)

(3)

Expand the integrals by implementing upper and lower limits:

1− Vs =

∫ s

0

∫ 1

0

ln s

lnxy
dy dx+

∫ 1

s

∫ s/x

0

ln s

lnxy
dy dx+Area of R3

Trivially, the area of R3 is (s ln s− s+ 1). Therefore, we can simplify the equation:

−Vs = (ln s)

(∫ s

0

∫ 1

0

1

lnxy
dy dx+

∫ 1

s

∫ s/x

0

1

lnxy
dy dx

)
+ (s ln s− s) (4)
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Extract the two integrals and denote them as I1 and I2:

I1 =

∫ s

0

∫ 1

0

1

lnxy
dy dx I2 =

∫ 1

s

∫ s/x

0

1

lnxy
dy dx (5)

First, we consider the derivative of I1.

dI1
ds

=
d

ds

∫ s

0

∫ 1

0

1

lnxy
dy dx =

∫ 1

0

1

ln sy
dy

Because inner integral is independent to s, we can just simply apply FTOC to replace x with s in

inner integral.

Next, we move to the derivative of I2.

dI2
ds

=
d

ds

∫ 1

s

∫ s/x

0

1

lnxy
dy dx

Unfortunately, there’s s in inner integral, so we cannot apply FTOC. Let’s introduce a useful tool,

Leibniz integral rule (simplified form):

d

dx

∫ x

a

f(x, t) dt = f(x, x) +

∫ x

a

∂

∂x
f(x, t) dt (6)

With this tool, we represent inner integral as f(s, x), then we can get

dI2
ds

= − d

ds

∫ s

1

f(s, x) dx

= −f(s, s)−
∫ s

1

∂

∂s
f(s, x) dx

= −
∫ s/s

0

1

ln sy
dy −

∫ s

1

1

x
· 1

ln s
dx

= −
∫ 1

0

1

ln sy
dy − 1

From line 2 to 3, we apply FTOC again. Let’s combine the derivative of I1 and I2:

dI1
ds

+
dI2
ds

=
d

ds
(I1 + I2) = −1 (7)

That is a constant! On the other hand, it shows that

I1 + I2 = −s+ Const.

Notice that I1 has the integral
∫ s

0
and I2 has

∫ s/x

0
, so when s = 0, I1 and I2 should be both 0.

That is to say, Const. = 0, which also means

I1 + I2 = −s (8)
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Back to the equation (4), we can now derivative both side by s:

−dVs

ds
=

1

s
(I1 + I2) + (ln s)

d

ds
(I1 + I2) + ln s

Insert the values that we just calculated, then we get

dVs

ds
= 1

Recall the definition of CDF, which is just the volume Vs, and PDF is the derivative of CDF.

Therefore:

PDF of (xy)z = 1 (9)

That is to say, the distribution of (xy)z is U(0, 1)
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